
A Smart HPC interconnect for clusters of

Virtual Machines

Anastassios Nanos1⋆, Nikos Nikoleris2⋆⋆, Stratos Psomadakis1

, Elisavet Kozyri3⋆ ⋆ ⋆, and Nectarios Koziris1

1 Computing Systems Laboratory, National Technical University of Athens
2 Uppsala Architecture Research Team, Uppsala University

3 Cornell University

Abstract. In this paper, we present the design of a VM-aware, high-
performance cluster interconnect architecture over 10Gbps Ethernet. Our
framework provides a direct data path to the NIC for applications that
run on VMs, leaving non-critical paths (such as control) to be handled
by intermediate virtualization layers. As a result, we are able to multi-
plex and prioritize network access per VM. We evaluate our design via
a prototype implementation that integrates RDMA semantics into the
privileged guest of the Xen virtualization platform. Our framework al-
lows VMs to communicate with the network using a simple user-level
RDMA protocol. Preliminary results show that our prototype achieves
681MiB/sec over generic 10GbE hardware and relieves the guest from
CPU overheads, while limiting the guest’s CPU utilisation to 34%.

1 Introduction

Nowadays, Cloud Computing infrastructures provide flexibility, dedicated
execution, and isolation to a vast number of services. These infrastruc-
tures, built on clusters of multicores, offer huge processing power; this
feature makes them ideal for mass deployment of compute-intensive ap-
plications. However, I/O operations in virtualized environments are usu-
ally handled by software layers within the hypervisor. These mechanisms
multiply the numerous data paths and complicate the way data flow from
applications to the network.

In the HPC world, applications utilize adaptive layers to overcome
limitations that operating systems impose in order to ensure security,
isolation, as well as fairness in resource allocation and usage. To avoid
the overhead associated with user-to-kernel–space communication, clus-
ter interconnects adopt a user-level networking approach. However, when
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applications access I/O devices without regulation techniques, security
issues arise and hardware requirements increase. Currently, only a subset
of the aforementioned layers is implemented in virtualization platforms.

In this paper, we propose a framework capable of providing VMs with
HPC interconnect semantics. We examine the implications of bypassing
common network stacks and explore direct data paths to the NIC. Our
approach takes advantage of features found in cluster interconnects in
order to decouple unnecessary protocol processing overheads from guest
VMs and driver domains. To evaluate our design, we develop a lightweight
RDMA protocol over 10G Ethernet and integrate it in the Xen virtual-
ization platform. Using network microbenchmarks, we quantify the per-
formance of our prototype. Preliminary results indicate that our imple-
mentation achieves 681MiB/sec with negligible CPU involvement on the
guest side, while limiting CPU utilization on the privileged guest to 34%.

2 Background and Related Work

In virtualization environments, the basic building blocks of the system
(i.e. CPUs and memory) are multiplexed by the Virtual Machine Monitor
(VMM). In ParaVirtualized (PV) [1] VMs, only privileged instructions are
trapped into the VMM; unprivileged operations are carried out directly on
hardware. Since this is the common case for HPC applications, nearly all
overheads from intermediate virtualization layers in an HPC context are
associated with I/O and memory management. Data access is handled by
privileged guests called driver domains that help VMs interact with the
hardware via a split driver model. Driver domains, host a backend driver,
while guest VM kernels host frontend drivers, exposing a per-device class
API to guest user– or kernel–space. With SR/MR-IOV [2] VMs exchange
data with the network using a direct VM-to-NIC data path provided by a
combination of hardware and software techniques: thus, device access by
multiple VMs is multiplexed in firmware running on the hardware itself,
bypassing the VMM on the critical path.

Overview of the Xen Architecture Xen [3] is a popular VMM that uses
PV. It consists of a small hypervisor, driver domains, and the VMs (guest
domains). Xen Memory Management: In Xen, memory is virtualized in or-
der to provide contiguous regions to OS’s running on guest domains. This
is achieved by adding a per-domain memory abstraction called pseudo-

physical memory. So, in Xen, machine memory refers to the physical
memory of the entire system whereas pseudo-physical memory refers to
the physical memory that the OS in any guest domain is aware of. Xen
PV Network I/O: Xen’s PV network architecture is based on a split driver
model. Guest VMs host the netfront driver, which exports a generic Eth-



ernet API to kernel-space. The driver domain hosts the hardware specific
driver and the netback driver, which communicates with the frontend via
an event channel mechanism and injects frames to the NIC via a software
bridge. Xen Communication Mechanisms: As communication between the
frontend and the backend is a major part of PV, we briefly describe Xen’s
doorbell mechanisms. Grant Mechanism: To efficiently share pages across
guest domains, Xen exports a grant mechanism. Xen’s grants are stored
in grant tables and provide a generic mechanism for memory sharing be-
tween domains. This subsystem allows shared-memory communications
between unprivileged domains and can be used to create ring buffers be-
tween them. Event Channels: Two guests can initialize an event channel
between them and then exchange events that trigger the execution of the
corresponding handlers.

High-performance Interconnects: Typical HPC applications utilize mech-
anisms to overcome limitations imposed by general purpose operating
systems. These layers are usually: (a) communication libraries (MPI), (b)
mechanisms that bypass OS kernels to optimize process scheduling and
device access (user-level networking, zero-copy, page-cache bypass, etc.).
High-performance communication protocols comprise the backend layers
of popular parallel programming frameworks (e.g. MPI). These protocols
run on adapters that export part of the network interface to user–space via
endpoints. 10G Ethernet: While VMs can communicate with the network
over TCP, UDP, or even IP protocol layers, this choice entails unwanted
protocol processing. In VM environments, HPC protocol messages are
encapsulated into TCP/IP datagrams, so significant latency ensues.

10G Ethernet and its extensive use in cluster interconnects has given
rise to a large body of literature on optimizing upper-level protocols,
specifically, protocol handling and processing overheads [4–7]. Recent
advances in virtualization technology have minimized overheads associ-
ated with CPU or memory sharing. However, I/O is a completely differ-
ent story: intermediate virtualization layers impose significant overheads
when multiple VMs share network or storage devices [8, 9]. Previous work
on this limitation has mainly focused on PV. Menon et al. [10] propose
optimizations of the Xen network architecture by adding new capabilities
to the virtualized network interface (scatter/gather I/O, TCP/IP check-
sum offload, TCP segmentation offload). [11] enhances the grant mecha-
nism, while [12] proposes the extension of the VMM scheduler for real-
time response support. The authors in [13] and [14] present memory-wise
optimizations to the Xen networking architecture. While all the afore-
mentioned optimizations appear ideal for server-oriented workloads, the
TCP/IP stack imposes a significant overhead when used for a message



passing library, which is standard practice in HPC applications. Contrary
to the previous approaches, Liu et al. [15] describe VMM-bypass I/O
over Infiniband. Their approach is novel and based on Xen’s split driver
model. In [16], the authors present the design of a similar framework using
Myrinet interfaces. We build on this idea, but instead of providing a vir-
tualized device driver for a cluster interconnect architecture, we develop
a framework that forwards requests from the VM’s application space to
the native device driver.

3 Design and Implementation

Our approach is built on the following pillars: (a) a library which pro-
vides an application interface to guest’s user-space; (b) a frontend that
forwards guest’s applications requests to lower-level virtualization layers;
(c) a backend that multiplexes requests to access the network.

Main Components The user-space library exports the basic API which
defines the primitive operations of our protocol. Processes issue com-
mands via their endpoints (see section 2), monitor the endpoints’ status
and so on.

The API defines functions to handle control messages for opening
/ closing an endpoint, memory registration and RDMA read / write.
The library is also responsible for informing the frontend to setup the
communication channel with the backend. These primitive operations can
be used to implement higher level communication substacks, such as MPI
or shared memory libraries. Our approach exports basic RDMA semantics
to VM’s user-space using the following operations:

Initialization: The guest side of our framework is responsible for set-
ting up an initial communication path between the application and the
backend. Frontend-Backend communication: This is achieved by utilizing
the messaging mechanism between the VM and the backend. This serves
as a means for applications to instruct the backend to transmit or wait
for communication, and for the backend to inform the guest and the ap-
plications of error conditions or completion events. We implemented this
mechanism using event channels and grant references. Export interface
instance to user-space: To support this type of mechanism we utilize end-
point semantics. The guest side provides operations to open and close

endpoints, in terms of allocating or deallocating and memory mapping
control structures residing on the backend.

Memory registration: In order to perform RDMA operations from user-
space buffers, applications have to inform the kernel to exclude these
buffers from memory handing / relocation operations. To transfer data



from application buffers to the network, the backend needs to access
memory areas. This happens as follows: the frontend pins the memory
pages, grants them to the backend and the latter accepts the grant in or-
der to gain access to these pages. An I/O Translation Look-aside Buffer
(IOTLB) is used to cache the translations of pages that will take part
in communication. This approach ensures the validity of source and des-
tination buffers, while enabling secure and isolated access multiplexing.
Guest-to-Network: The backend performs a look-up in the IOTLB, finds
the relevant machine address and informs the NIC to program its DMA
engines to start the transfer from the guest’s memory. The DMA transfer
is performed directly to the NIC and as a result, packets are encapsulated
into Ethernet frames, before being transmitted to the network. We use a
zero-copy technique on the send path in order to avoid extra, unnecessary
copies. Packet headers are filled in the backend and the relevant (granted)
pages are attached to the socket buffer. Network-to-Guest: When an Ether-
net frame is received from the network, the backend invokes the associated
packet handler. The destination virtual address and endpoint are defined
in the header so the backend performs a look-up on its IOTLB and is
performs the necessary operations.Data are then copied (or DMA’d) to
the relevant (already registered) destination pages.

Wire protocol: Our protocol’s

Fig. 1.

packets are encapsulated into Eth-
ernet frames containing the type
of the protocol (a unique type),
source and destination MAC ad-
dresses.

Data Movement: Figure 1 shows
the data paths either for control
or data movement: Proposed ap-

proach: Applications issue requests
for RDMA operations through end-
points. The frontend passes requests
to the backend using the event channel mechanism (dashed arrow, b1).
The backend performs the necessary operation, either registering mem-
ory buffers (filling up the IOTLB), or issuing transmit requests to the
Ethernet driver (dashed arrow, c1). The driver, then, informs the NIC to
DMA data from application to the on-chip buffers (dashed arrow, d1).
Ideal approach: Although the proposed approach relaxes the system from
processing and context-switch overheads, ideally, VMs could communi-
cate directly with the hardware, lowering the multiplexing authority to
the NIC’s firmware (solid arrows).



4 Performance Evaluation

We use a custom synthetic microbenchmark to evaluate our approach over
our interconnect sending unidirectional RDMA write requests. To obtain
a baseline measurement, we implement our microbenchmark using TCP
sockets. TCP/IP results were verified using netperf [17] in TCP STREAM

mode and varying message sizes. As a testbed, we used two Quad core In-
tel Xeon 2.4GHz with an Intel 5500 chipset, with 4GB main memory. The
network adapters used are two PCIe-4x Myricom 10G-PCIE-8A 10GbE
NICsin Ethernet mode, connected back-to-back. We used Xen version 4.1-
unstable and Linux kernel version 2.6.32.24-pvops both for the privileged
guest and the VMs. The MTU was set to 9000 for all tests. We use 1GB
memory for each VM and 2GB for the privileged guest. CPU utilization
results are obtained from /proc/stat. To eliminate Linux and Xen sched-
uler effects we pinned all vCPUs to physical CPUs and assigned 1 core
per VM and 2 cores for the privileged guest, distributing interrupt affin-
ity to each physical core for event channels and the Myrinet NICs In the
following, TCP SOCK refers to the TCP/IP network stack and ZERO COPY

refers to our proposed framework.

4.1 Results

To obtain a baseline for our experiments, we run the pktgen utility of the
Linux kernel. This benchmark uses raw Ethernet and, thus, this is the
upper bound of all approaches. Figure 2(a) plots the maximum achiev-
able socket buffer production rate when executed in vanilla Linux (first
bar), inside the Privileged Guest (second bar) and in the VM (third bar).
Clearly, the PVops Linux kernel encounters some issues with Ethernet per-
formance, since the privileged guest can achieve only 59% of the vanilla
Linux case. As mentioned in Section 2, Xen VMs are offered a virtual Eth-
ernet device via the netfront driver. Unfortunately, in the default configu-
ration, this device does not feature specific optimizations or accelerators
and, as a result, its performance is limited to 416MiB/sec (56% of the
PVops case)4.

Bandwidth and Latency: Figure 2(b) plots the aggregate throughput
of the system over TCP/IP (filled circles) and over our framework (filled
squares) versus the message size. We also plot the Driver domain’s pktgen
performance as a reference. For small messages (<4KB) our framework
outperforms TCP by a factor of 4.3 whereas for medium-sized messages

4 for details on raw Ethernet performance in Xen PVops kernel see
http://lists.xensource.com/archives/html/xen-users/2010-04/msg00577.html
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Fig. 2.

(i.e. 128KB) by a factor of 3. For large messages (>512K) our framework
achieves nearly 92% of the pktgen case (for 2MB messages) and is nearly
3 times better than the TCP approach. The suboptimal performance
of the microbenchmark over TCP is due mainly to: (a) the complicated
protocol stack (TCP/IP) (see Section 4.1) and (b) the unoptimized virtual
Ethernet interface of Xen.

From a latency point of view (Figure 2(c)), an RDMA message over
TCP sockets takes 77µsec to cross the network, whereas over our frame-
work it takes 28µsec. To set a baseline latency-wise, we performed a DUMMY
RDMA write: 1 byte originating from an application inside the VM gets
copied to the privileged guest, but instead of transmitting it to the net-
work, we copy it to another VM on the same VM container. Results from
this test show that 14µsecs are needed for 1 byte to traverse the interme-
diate virtualization layers.

CPU time for RDMA writes: In the HPC world, nodes participating
in clusters except for low-latency and high-bandwidth communication,
require computational power.
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Fig. 3. CPU time breakdown for both the driver domain and the guests

Our approach bypasses the TCP/IP stack; we assume that, in this
case, the CPU utilization of the system is relaxed. In order to validate
this assumption we examine the CPU time spent in both approaches.
We measure the total CPU time when two VMs perform RDMA writes
of varying message sizes over the network (TCP and ZERO COPY ap-
proach). In Figure 2(d), we plot the CPU time both for the driver domain
and the VM. It is clearly shown that for 4K to 32K messages the CPU
time of our framework is constant, as opposed to the TCP case where
CPU time increases proportionally to the message size. When the 64K
boundary is crossed, TCP CPU time increases by an exponential factor
due to intermediate switches and copies both on the VM and the driver
domain. Our framework is able to sustain low CPU time on the Privileged
Guest and almost negligible CPU time on the VM. To further investigate
the sources of CPU time consumption, we plot the CPU time breakdown
for the Privileged Guest and the VM in Figures 3(a) and 3(b), respec-
tively.

In the driver domain (Figure 3(a)): (a)Our framework consumes more
CPU time than the TCP case for 4KB and 8KB messages. This is due
to the fact that we use zero-copy only on the send side; on the receive
side, we have to copy data from the socket buffer provided by the NIC to
pages originating from the VM. (b) For messages larger than 32KB, our
approach consumes at most 30% CPU time of the TCP case, reaching
15% (56 vs. 386) for 32K messages. (c) In our approach, system time is
non-negligible and varying from 20% to 50% of the total CPU time spent
in the Privileged Guest. This is due to the fact that we haven’t yet imple-
mented page swapping on the receive path. In the VM (Figure 3(b)): (d)
Our approach consumes constant CPU time for almost all message sizes
(varying from 30µsecs to 60µsecs). This constant time is due to the way
the application communicates with the frontend (IOCTLs). However, in
the TCP case, for messages larger than 64K, CPU time increases signifi-
cantly. This is expected, as all the protocol processing (TCP/IP) is done



inside the VM. Clearly, system time is almost 60% of the total VM CPU
time for 256K messages reaching 75% for 128K. (e) Our approach exhibits
negligible softirq time (apparent mostly in the receive path). This is due
to the fact that the privileged guest is responsible for placing data orig-
inating from the network to pages we have already pinned and granted.
On the other hand, the TCP case consumes softirq time as data elevate
on the TCP/IP network stack to reach the application’s socket.

5 Conclusions

We have described the design and implementation of a VM-aware high-
performance cluster interconnect architecture. Our approach integrates
HPC interconnect semantics in PV VMs using the split driver model.
Specifically, we build a framework that consists of a low-level backend
driver running in the driver domain, a frontend running in the VMs, and a
user-space library that provides applications with our protocol semantics.
We implement these RDMA semantics using a lightweight protocol and
deploy network microbenchmarks to evaluate its performance.

Our work extends the concept of user-level networking to VM-level
networking. Allowing VMs to interact with the network without the inter-
vention of unoptimized virtual Ethernet interfaces or the TCP/IP stack,
yields significant performance improvements in terms of CPU utilization
and throughput.

Our prototype implementation supports generic 10GbE adapters in
the Xen virtualization platform. Experimental evaluation leads to the fol-
lowing two remarkable results: our framework sustains 92% (681MiB/sec
over 737MiB/sec) of the maximum Ethernet rate achieved in our sys-
tem; at this maximum attainable performance, the driver domain’s CPU
utilization is limited to 34%, while the guest’s CPU is idle.

We are confident that our approach is generic enough to be appli-
cable to various virtualization platforms. Although our work is focused
on PV systems, it can be easily extended by decoupling the proposed
lightweight network stack from the driver domain to dedicated guests or
hardware. This way, virtualization can gain considerable leverage in HPC
application deployment from a networking perspective. We plan to en-
rich our protocol semantics in order to implement low-level backends for
higher-level parallel frameworks such as MPI or MapReduce.
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